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ABSTRACT

A multi-phase subjective experiment evaluating six commercially available binaural audio renderers was carried out.
This paper presents the methodology, evaluation criteria, and main findings of the tests which assessed perceived
sound quality of the renderers. Subjects appraised a number of specific sound quality attributes - timbral balance,
clarity, naturalness, spaciousness, and dialogue intelligibility - and ranked, in terms of preference, the renderers
for a set of music and movie stimuli presented over headphones. Results indicated that differences between the
perceived quality and preference for a renderer are discernible. Binaural renderer performance was also found to
be highly content-dependent, with significant interactions between renderers and individual stimuli being found,
making it difficult to determine an “optimal” renderer for all settings.

1 INTRODUCTION

Recent interest and advances in augmented reality (AR)
and virtual reality (VR) technologies have highlighted
the need for coherent and high-fidelity spatial audio.
Audio plays a significant role in orienting the user to
their 360◦ environment, providing information about
the location of virtual objects outside the user’s field
of view and directing the user’s attention. A number
of different binaural audio technologies, known in this
work as binaural renderers, have recently become com-
mercially available for use in AR and VR applications.
These renderers can also be used to generate immersive

audio for more traditional music, movie, and computer
game settings to significantly enhance the experience.

One of the key concerns of psychoacoustics research is
to understand the auditory system with respect to sound
localization and “higher-level” perceptual judgements
about the quality and characteristics of the perceived
auditory image. Psychoacoustic evaluation of com-
mercial binaural renderers serves a primary purpose of
gauging the variability of performance across a number
of metrics. Further, because each renderer is distinct in
its rendering methodologies (where methodology refers
to the entire signal chain, including the specific Head-
Related Transfer Functions [HRTFs] used for spatial-
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ization), it also presents an opportunity to research the
perceived sound quality space and its partition. Finally,
this initial study provides an opportunity to examines
the proposed methodology for the comprehensive eval-
uation of binaural renderers.

This work presents part of the results obtained from
a larger three-phase experiment that was conducted
on the performance of commercially available binaural
renderers. It is beyond the scope of this study to identify
the specific renderers tested and evaluate their internal
mechanisms. The methodology presents a framework
for a blind user-level assessment of available renderers
for the interest of gauging the high-level performance
over specific applications without necessarily having
access to the internal software.

In the experiment, six different renderers were com-
pared using a number of qualitative and quantitative
metrics [1]. Phase I of the experiment was concerned
with analyzing the prevalence of 3D sound localization
errors - externalization, front/back and up/down confu-
sions, and horizontal localization accuracy - for each of
the renderers under test. The results on externalization,
front/back and up/down confusions, are presented in
[2], while the results of the median-plane localization
test are found in [3]. Phase II of the experiment was
concerned with evaluating specific sound quality at-
tributes believed to be important for appraising spatial
audio scenes. Phase III consisted of a forced choice
ranking of the renderers in terms of preference and
is interpreted, in the context of this work, as a global
assessment of perceived sound quality. The results of
both Phase II and III, along with subsequent joint analy-
sis that looked at the correlations between spatial sound
quality attributes and listener preference, are presented.

1.1 Spatial Audio Evaluation

Perceived spatial sound quality has been found to be
comprised of distinct perceptual dimensions related to
more specific sound qualities [4, 5]. The identifica-
tion of spatial sound quality attributes has been a large
subject of research. Most approaches combine some
free verbalization method, whereby subjects are per-
mitted to construct their own vocabulary to represent
auditory sensations, with subsequent perceptual evalua-
tion and statistical analyses [6, 7, 8, 9]. A number of
different attribute sets have been proposed by various
authors [4, 7, 10, 11]. Generally, there are three main
classes of sound quality attributes - timbral, spatial,

and technical. Timbral attributes relate to tone color,
spatial attributes to the three-dimensional aspects of the
audio scene, and technical attributes to distortion and
artifact-related sensations. Some attributes are more
global, like naturalness, and are often a combination of
both timbral and spatial features. Thus the distinction
between attribute classes in the above formulation is
not sharp, but serves as a generic model of the sound
quality space [12].

The statistical analyses of multidimensional sound qual-
ity data has a rich history. Many authors have explored
the use of principal component analysis (PCA), prin-
cipal factor analysis (FA), cluster analysis, correlation
analysis, and regression analysis, often in conjunction
with one another, to understand the sound quality space
[10, 13, 14, 15, 16]. These tests give different per-
spectives on the data. In some of the experimental
designs, preference is treated as a sound quality and
assessed with the other direct attributes [17]. Other
authors have investigated evaluating preference in a
separate assessment from the other sound quality at-
tributes. The goal of such work is then to learn the
mapping from sound quality attributes to preference.
For instance, Susini et al. [18] used a multidimensional
scaling technique, in which ratings of dissimilarity be-
tween pairs of stimuli for each sound quality were
assessed, to predict the probability of one sound be-
ing preferred over another. Zacharov and Koivuniemi
[7] attempted to learn the preference mapping using a
partial least squares regression. The sound quality at-
tributes of different multichannel recording techniques
(reproduced over loudspeakers) were measured in pair-
wise (on 100-point scales), while a single preference
judgment (on a 200-point scale) was gathered for that
same pair. Movement, depth, broadness, and tone color
(and their interactions) were strong predictors of prefer-
ence, while characteristics like richness and hardness
did not contribute significantly to prediction.

Similar to this work, Guastavino and Katz [11] ex-
plored the interactions between reproduction methods
(1D, 2D, and 3D loudspeaker reproduction) and stimuli
(3 distinct soundscapes, two of which included musical
elements) on overall preference of spatial audio content.
An important finding was that the choice of preferred
reproduction method had a statistically significant inter-
action with the type of content presented and therefore
no universally optimal reproduction method could be
determined. The authors also concluded that attributes
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like presence and readability were important to listen-
ers. Marins et al. [19] used a MUSHRA-type test for
relating subjective perceptual changes on degraded mul-
tichannel audio, concluding that timbral balance was
the main factor for basic audio quality. In [20], sound
quality attributes, measured using a MUSHRA-based
test protocol with stimuli presented over loudspeakers,
were correlated with surround-sound quality using a
multiple linear regression. Three clusters of attributes
were selected - timbre, space and defects - the latter
of the three being deemed the strongest predictor of
overall sound quality judgements. While this work
specifically focuses on a methodology for evaluating
static binaural audio content over headphones, previous
studies about multichannel spatial audio can help to un-
derstand the context of choosing and relating quality
attributes to overall renderer preference, and interpret
the role of stimuli and rating methodology in evaluating
binaural renderers.

2 METHODOLOGY

2.1 Rendering Procedure, Stimuli, and
Presentation

Six different binaural renderers were tested in the com-
parative study. These renderers are labelled 00 - 05.
Three of the renderers (00, 01, and 05) use higher-order
ambisonics (HOA) to spatialize content. Two of the
renderers (03 and 04) use first-order ambisonics (FOA).
The final renderer (02) uses direct virtualization (HRTF
convolution/filtering). All of the ambisonics-based ren-
derers use 3D ambisonics. Though each renderer has
head-tracking capabilities in its native application, the
experimental content was presented under a static con-
dition and reproduced over headphones.

A total of six different surround-sound stimuli rendered
for static binaural presentation were tested in Phases
II and III1 - three music and three movie stimuli. The
“music” stimuli were short musical excerpts. These
stimuli were recorded works cut to approximately 20
seconds in length. The stimuli were of varying style,
one jazz, one wind quintet, and one symphonic orches-
tral work. The jazz piece was mixed for 5.0 surround-
sound while the symphonic works were mixed for 9.0
surround-sound with height. The “movie” stimuli were

1This section is concerned with Phase II and III of the larger
methodology. For Phase I please refer to the previous documents
about externalization, confusions and localization [2, 3].

excerpts taken from a 5.0 surround-sound mix of “Star
Wars: The Force Awakens.” These stimuli were no
longer than 30 seconds and each included dialogue,
music, and sound effects. For each stimuli, the indi-
vidual channels were treated as independent virtual
audio objects for processing by each renderer. These
objects were placed at a distance of one meter from
the listener in the auditory scene at azimuths and eleva-
tion corresponding to ITU-R guidelines for 5.0 and 9.0,
respectively [21]. These channels were rendered to a
single piece of static binaural content at 48 kHz sample
rate and 24 bit depth without additional room infor-
mation; all settings regarding room reverb and early
reflections were turned off. All other renderer proper-
ties were set to their optimal settings (with matching
sample rate and audio quality export settings).

Each subject was randomly assigned to either the “mu-
sic” or “movie” condition; the condition for each sub-
ject was kept consistent throughout both phases in or-
der to perform separate multivariate correlation analy-
ses. The test was administered over circumaural head-
phones (Sennheiser HD-650) without additional equal-
ization and in a soundproof booth (NYU Dolan Iso-
lation Booth). Custom scripts were developed to run
the experiment and collect data without experimenter
intervention. A graphical user interface (GUI) was de-
signed to allow subjects to play stimuli ad libdum (after
a forced listening round), comment on specific trials,
and indicate and submit their responses.

2.2 Phase II

Phase II was concerned with the evaluation of specific
sound quality attributes. Subjects assigned to the music
condition rated four sound quality attributes, while
those assigned to the movie condition assessed five
sound quality attributes. The descriptions of each of
the attributes was inspired by previous literature [11,
17, 22]. Ultimately, the descriptors were defined as
follows:

• Timbral Balance: This attribute describes how
balanced (or colored) the different tone ranges of
the sound appear to be.

• Clarity: This attribute describes whether the
sound appear to be clear or muffled.

• Naturalness: This attribute describes whether the
sound gives a realistic impression, as opposed to
artificial.
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• Spaciousness: This attribute describes how much
the sound appears to surround you.

• Dialogue Intelligibility (movie stimuli only):
This attribute describes the ease at which dialogue
can be understood.

The description of each of these characteristics was pro-
vided to the subject before the experiment began. The
subject completed twelve (music) or fifteen (movie)
trials in this phase - one trial per characteristic per
stimuli. In each trial a subject rated a single charac-
teristic for each of the six renderers. The procedure
was as follows: subjects played the first renderer, were
forced to listen to the clip in its entirety, and then rate
the characteristics on a 5-point scale, with 1 being the
worst, and 5 the best. The subject was then free to
move to the next renderer. After all six renderers had
been preliminarily rated, the subject was free to replay
any of the renderers, for any length of time, to refine
their ratings. Subjects were free to use any range of
the scale (i.e. were not forced to select a 1 and/or a
5). Once listeners were satisfied with their assessment
and ratings, they submitted and moved to the next trial.
No hidden reference was provided; judgements were
purely comparative. All sound qualities and stimuli,
along with the presentation of the renderers within a
trial, were randomized.

2.3 Phase III

Phase III was concerned with determining a ranking of
the six renderers in terms of user preference by forcing
subjects to rank the renderers from least preferred to
most preferred. No additional information about what
such an assessment entailed was provided. The test
presented three trials, one for each stimulus. The or-
der of presentation of the stimuli was randomized for
each subject. In each trial a subject was tasked with
constructing a ranking of the renderers under the fol-
lowing procedure: the order of the six renderers was
first randomized. The renderers were then automati-
cally played for 7 seconds (in lieu of the full 20 or 30
seconds) in that order. After all renderers had been
played, subjects were instructed to select their least
preferred renderer from the set. They were free to re-
play any of the renderers for any period of time before
making this selection. The renderer that was selected
as the least preferred was removed and the remaining
renderers were reshuffled and presented again with the

same procedure. This process of elimination contin-
ued until a complete ranking of renderers from least
preferred to most preferred was determined.

3 Results

A total of 80 paid subjects participated in Phase II and
III. Some subjects did not complete Phase II. This to-
taled 45 “music” and 35 “movie” Phase III tests and
43 “music” subjects and 29 “movie” Phase II tests.
A number of statistical methods were used to ana-
lyze the raw data. The data was not normalized as
the absolute differences between renderers were of in-
terest. The data from Phase II and III were treated
separately at first. The analyses for Phase II included
repeated-measures multivariate analysis of variance
(RM-MANOVA), repeated-measures analysis of vari-
ance (RM-ANOVA), correlation analysis, and princi-
ple components analysis (PCA). Parametric statistical
methods, of which ANOVA and Pearson correlations
are categorized, have been shown to be robust to vio-
lations of traditional parametric assumptions and can
be used to analyze 5-point interval data (and even or-
dinal Likert data) [23, 24]. The analysis for Phase
III consisted of Friedman tests (because the data was
ranked) [25] and follow-up Dunn-Bonferroni multiple
comparison tests (to test for pairwise differences be-
tween nonparametric distributions) [26]. The data was
then analyzed in conjunction to understand how well
the various sound quality attributes were correlated
with renderer rank. This was done using Spearman
rank correlations analyses [27] and Friedman Tests
(including follow-up Dunn-Bonferonni multiple com-
parison tests). Significance is reported at three levels,
α <0.05, 0.01, 0.001 for all statistical tests, denoted
with *, **, and ***, respectively. For the ANOVA test
statistics, Greenhouse-Geisser corrections were used
when sphericity assumptions were violated (α < 0.05)
(denoted with a in the appendix).

3.1 Phase II

3.1.1 Analysis of Variance

The data in Phase II was captured on a 5-point scale. It
was treated as interval data in an initial set of typical
statistical models. This was used to gain a preliminary
understanding of the variance structure of the data. The
Pillai’s Trace F-Statistic was used in the multivariate
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tests as it displays the most robust behavior to devia-
tions from assumptions of homoskedasticity [26]. In
order to get an understanding of the differences be-
tween the two experimental conditions - music and
movie - a MANOVA test was first carried out. Sub-
jects’ answers across each of the different stimuli for
each experimental condition were averaged, resulting
in a balanced design with a single between-subjects
factor, content type, a single within-subject factor, ren-
derer, and four dependent measures - balance, clarity,
naturalness and spaciousness.

At the multivariate level, content type was not
significant, but renderer (Pillai’s Trace=0.951,
F(20,51)=49.305, p<0.001***, Partial ETA2=0.951),
and the interaction term renderer*type, (Pillai’s
Trace=0.739, F(20,51)=7.228, p<0.001***, Partial
ETA2=0.739) were statistically significant. While
there was no significance differences in rating due
solely to content type, the multivariate tests indicated
that the content type interacts with the renderers,
meaning that the individual renderer performance
varies across the two conditions. These results
prompted further univariate tests for each of the
significant factors. At the univariate level, renderer
was significant (p<0.001***) and renderer*content
type was significant (p<0.001*** for balance, clarity,
and naturalness; p=0.021* for spaciousness) for all
four dependent measures (see Appendix A).

The results of the multivariate and univariate tests in-
dicated that each experimental condition needed to be
analyzed separately. This also permitted analyzing the
individual stimuli in each condition, in lieu of aver-
aging. In the music condition, a repeated-measures
MANOVA was conducted, this time with two within-
subject factors - renderer and stimulus -, no between-
subject factors, and four dependent measures - balance,
clarity, naturalness and spaciousness. The multivari-
ate tests indicated a significant effect due to renderer
(Pillai’s Trace=0.977, F(20,23)=49.475, p<0.001***,
Partial ETA2=0.977) and renderer*stimulus (Pillai’s
Trace=0.998, F(40,3)=33.599, p<0.007**, Partial
ETA2=0.998), but not due to stimulus. Univariate tests
were once again conducted for each of the significant
factors. At the univariate level, renderer was signif-
icant for each dependent measure (p<0.001***) and
renderer*stimulus was significant for all dependent
measures (p<0.25*) except balance (p=0.062) (see Ap-
pendix B). Given the significance of the interaction
term, in the music condition, renderer performance for

each of the sound quality attributes shows high content-
dependency, with only some minor invariance between
stimuli for ratings of timbral balance.

The movie condition was also analyzed with a repeated-
measures MANOVA with two within-subject factors -
renderer and stimulus - but with five dependent mea-
sures - balance, clarity, naturalness, spaciousness,
and dialogue. The multivariate results reported are
the F statistics of averaged variables as opposed to
the exact statistic; insufficient residual degrees of
freedom prevented the calculation of an exact test
statistic for the interaction term renderer*stimulus.
Similarly, the test indicated that renderer (Pillai’s
Trace=1.010, F(25,700)=7.084, p<0.001***, Par-
tial ETA2=0.202) and renderer*stimulus (Pillai’s
Trace=0.667, F(50,1400)=4.232, p<0.001***, Partial
ETA2=0.133) were significant. Stimulus was once
again not significant at the multivariate level. Given
the significant effects, follow-up univariate ANOVAs
were carried out. Renderer and renderer*stimulus were
highly significant (p<0.001***) for each sound quality
(see Appendix C).

Follow-up Bonferroni-corrected multiple comparison
tests were computed for all of the univariate ANOVA
tests in each experimental conditions (music and
movie). These are not reported, but generally, many of
the groups were significant, indicating that the render-
ers can be distinguished from one another. Significant
group differences for renderers 04 and 05 against each
of the other renderers were typically found. Group dif-
ferences between the other four were also found, but
much less frequently. Given the significance of the

Fig. 1: Dialogue - Average ratings and 95% confidence
intervals for movie condition.
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Fig. 2: Average ratings and 95% confidence intervals of each spatial sound quality attribute for the music condition
(left), movie condition (center) and across conditions (right).
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Fig. 3: Corrgram of Phase II Music data, averaged
across stimuli.

interaction between renderer and stimulus and the dif-
ference between experimental conditions, the average
ratings and 95% confidence intervals for four of the
spatial sound quality attributes - balance, clarity, nat-
uralness, spaciousness - pictured in Fig. 2 are broken
down at both levels of analysis (across experimental
condition and within experimental condition). Dia-
logue Intelligibility was unique to the movie condition,
so this particular characteristic is plotted separately
(Fig. 1). The averages and confidence intervals confirm
the results of the ANOVA and post hoc testing. From
the figures it is clear that renderer 04 was the weakest
performer across all metrics and renderer 05 also per-
formed quite poorly when compared to the remaining
four renderers. Comparing between the two conditions
(right column), the variability of renderer 02’s perfor-
mance is evident. While being one of the strongest
performers in the music condition, it tended to cluster
with renderers 04 and 05 in the music condition. Other
minor differences between the other renderers due to
content type can be observed, but they are not as dras-
tic as with renderer 02. Further, there appears to be
a stronger interaction between renderer and stimulus
in the movie condition, with much greater variance of
renderer performance across stimuli. The renderers
performed more consistently in the music condition,
although the interaction term was still significant for
clarity, naturalness, and spaciousness and nearly sig-
nificant (p=0.063) for balance.

3.1.2 Multicollinearity Analysis

After understanding the general behavior of the inde-
pendent variables, the dependent variables were ex-

Fig. 4: Corrgram of Phase II Movie data, averaged
across stimuli.

plored. This was done using two methods, Pearson
correlations and PCA. The variance analysis indicated
the experimental conditions deserved separate treat-
ment. To compute the Pearson correlations without vi-
olating assumptions of independence, the correlations
between each of the sound qualities for each renderer
were averaged across the three stimuli and are reported
as corrgrams in Figs. 3-4. Thus each subject has one ob-
servation of sound quality averages per renderer. The
corrgram (the upper triangle of which is redundant)
indicates that for each condition there were either near-
zero correlations or positive correlations between the
sound qualities; increases in ratings of a single qual-
ity predict increases in the other qualities. Consistent
with Figs. 1-2, renderer 04 and 05 exhibit abnormal
behavior, with very strong correlations between many
of the sound quality attributes. The poorer quality of
renderer 04 is apparent and the multicollinearity likely
reflects the scale used in the experiment and the com-
parative nature of the study. Because all renderers were
tested comparatively, with little room for nuance in
judgements due to the 5-point scale, renderer 04 was
likely relegated to the bottom of the scale for all sound
quality judgements. The other four renderers have less
drastic correlations, with minor to mild correlations
being found. There does generally appear to be less
collinearity between spaciousness and the other quali-
ties, though this is less apparent in the movie condition.

The raw Phase II music and movie datasets, without
averaging across stimuli, were then analyzed using
PCA. For the music condition, the process returned
4 components that were a linear combination of the
original four sound qualities. For the movie condition,
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Balance Clarity Naturalness Spaciousness % Explained
PCA-1 0.51 0.53 0.52 0.42 64.81
PCA-2 -0.29 -0.16 -0.27 0.90 15.75
PCA-3 0.79 -0.54 -0.29 0.07 10.30
PCA-4 -0.16 -0.63 0.75 0.07 9.14

Balance Clarity Naturalness Spaciousness Dialogue % Explained
PCA-1 0.47 0.44 0.43 0.44 0.45 60.62
PCA-2 -0.147 0.137 0.77 -0.59 -0.15 11.74
PCA-3 -0.03 0.39 -0.40 -0.58 0.59 10.49
PCA-4 0.76 -0.55 0.00 -0.33 0.08 9.28
PCA-5 -0.42 -0.57 0.24 0.13 0.65 7.85

Table 1: PCA Components for Phase II Music (top) and Movie (bottom).

5 components were returned. These components are
reported in Table 1. In both conditions, the first com-
ponent accounts for over 60% of the data variance in
each experimental condition. And the contribution of
each of the characteristics to the component is compa-
rable. The transformed data was then projected onto
various dimensions of the PCA space. Pictured in Fig.
5 are the data projections onto the subspaces created
by the first three PCA components. The projections of
the sound quality attributes used to construct the space
are also included (and multiplied by a factor of 1.5 to
improve readability of the plots). The projected data is
grouped by renderer (using the interquartile ranges as
estimates of the spread [11]) and represented as ellipses.
The renderer groupings in the PCA figures are consis-
tent with Figs. 1-2 with regards to the performance
of renderers 04 and 05, and the variable performance
of renderer 02 between experimental conditions. In
the music condition, the PCA projections involving
the first component show clustering of renderers 00,
01, 02, and 03. The projections onto the second and
third component indicate that most of the data variance
due to renderer differences have been factored out and
thus all renderers cluster together. The movie condi-
tion is similar, with renderers 00, 01, and 03 clustering
together in projections involving the first component
and all renderers clustering together for the later com-
ponents. The second and third component projections
show much clearer separation of the sound qualities.
Taking the tables and the projections together, its clear
that the principle component factors out the variance
due to renderer differences, of which all sound quality
attributes have similar contributions, before parsing the
differences between sound quality attributes. The re-
maining components, which compose less than half of
the data variance, provide further evidence that there is

strong collinearity between the factors tested, specifi-
cally clarity and naturalness in the music condition and
clarity and dialogue in the movie condition. Some of
the attributes (such as spaciousness and naturalness) do
appear to function along distinct perceptual dimensions,
which is discussed further in section 4.

3.2 Phase III

The Phase III tests resulted in 3 rankings of renderers
per subject. Renderers were ranked 1-6, with rank 1
being the most preferred renderer and rank 6 being
the least preferred renderer. The frequency bar char
pictured in Fig. 6 presents the number of observations
of each rank for each renderer, with rank increasing
from 1 to 6 as one moves to the right within each
renderer grouping, and the two experimental condi-
tions stacked above one another. The renderer rankings
mirror the Phase II results, with renderer 04 and 05
being the weakest and second weakest performers, re-
spectively. The other renderers are comparable and
renderer 02’s variability in experimental condition is
also visible. Before running nonparametric tests, the
renderer ranks were averaged across stimuli, resulting
in a single average set of rankings for each subject.
The average-rank data distributions for each renderer
were then compared using a Friedman test for k mu-
tually correlated samples [28, 25]. Kendall’s coeffi-
cient of concordance (W) is also reported and inter-
preted as a measure of agreement between subjects’
rankings. Given that that the Friedman test involves
a rank-transformation, rank averages are valid inputs
for the test. And while averaging stimuli loses im-
portant information about the role of the stimuli in
the ranking, the interaction term is often difficult to
interpret in rank data. The Friedman test indicated
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Fig. 5: PCA projections onto the subspaces composed by components 1-3 for Music (top) and Movie (bottom).
Data is grouped by the interquartile ranges of each renderer (as denoted in the legend) in the transformed
space.

significant differences between the renderers for the
music condition (X2(5,N=45)=137.641, p<0.001***,
Kendall’s W=0.612) and for the movie condi-
tion (X2(5,N=35)=102.647, p<0.001***, Kendall’s
W=0.587). These are reported in Table 2, along with
the other summary statistics discussed below. Kendall’s
W indicates that there was a strong consensus between
subjects in the rankings of the renderers. Follow-up
Dunn-Bonferroni comparisons were used to analyze
the pairwise differences between average renderer rank-
ings [29] but are not reported. In both conditions, many
of the pairings were significant, and generally con-
firmed the trend that renderers 04 and 05 were poor
performers. The movie condition post hoc tests also
indicated that renderer 02 performed poorly when com-
pared with renderers 00, 01, and 03. The pairwise com-
parisons did not reveal which renderer was outright
the strongest performer, but suggested that renderer 01
and 03 when compared across both conditions are con-
sistently ranked in the top group of renderers, a trend
which is discernible, though to a lesser degree, in Fig.
6.

3.3 Joint Analysis

The joint analyses involved combining the data from
Phase II and III to better understand the mapping of
spatial sound quality to listener preference. Given the
ordinal nature of the rank data, nonparametric methods
were used for the joint analysis [30]. Each experimental
condition was handled separately. Correlation analy-
sis was carried out to determine which sound quality
was most correlated with renderer ranking. To per-
form this, each subject’s answers were averaged across
stimuli, resulting in 6 observations per subject, one for
each renderer, of average measures of a renderer’s nat-
uralness, clarity, balance, and spaciousness (dialogue),
and an average rank. For each subject, the rank cor-
relations (Spearman correlations) between each sound
quality and rank was computed [27]. Thus each subject
had one observation of a balance-rank, clarity-rank,
naturalness-rank, and spaciousness-rank (dialogue-
rank) correlation. A boxplot displaying the distribution
of quality-rank correlations for each sound quality is
pictured in Fig. 7. A positive correlation is in the di-
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Fig. 6: Rank counts for each renderer. The leftmost bar in each grouping is the number of observations of rank 1
(best rank) and the rightmost bar in each grouping is the number of observations of rank 6 (worst rank).

Fig. 7: Boxplot of Attribute-Rank Spearman Correlations for Music (left) and Movie (right).

rection of improved rank. The boxplot indicates that
most of subject correlations were positive, though there
exist some outliers and heteroskedastic behavior. In
the music case, spaciousness appears least correlated
with rank. In the movie case, there are fewer outliers
and naturalness appears least strongly correlated with
preference. Across the two conditions, clarity appears
to have the strongest relationship with rank, though all
groups are generally quite similar.

Given the distributions, a Friedman test was again
used, with the null hypothesis being that there are
no differences between the distributions of attribute-
rank correlation coefficients. In the music case, sig-
nificant differences were found (X2(3,N=43)=16.385,
p<0.001***, Kendall’s W=0.127). Follow-up post-hoc

Dunn-Bonferroni tests indicated significant differences
between naturalness and spaciousness (p=0.021*)
and clarity and spaciousness (p=0.001**), and
near-significance between balance and spaciousness
(p=0.058). No statistically significant differences
were found in the movie condition (X2(3,N=29)=6.000,
p<0.199, Kendall’s W=0.052).

4 DISCUSSION

The analyses of the multidimensional sound quality
assessment revealed a number of trends and relation-
ships about the behavior of the renderers, the stimuli,
and the sound quality attributes. The initial Phase II
MANOVAs and ANOVAs tested whether the indepen-
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Scenario Test Type Test Statistic Significance
Phase III - Music

Friedman X2(5, N = 45) = 137.641 p < 0.001***
Kendall’s Coefficient W = 0.612 p < 0.001***

Phase III - Movie
Friedman X2(5, N = 35) = 102.647 p < 0.001***

Kendall’s Coefficient W = 0.587 p < 0.001***
Joint Analysis - Music

Friedman Test X2(3, N = 43) = 16.385 p = 0.001**
Kendall’s Coefficient W = 0.127 p = 0.001**

Joint Analysis - Movie
Friedman X2(3, N = 29) = 6.000 p = 0.199

Kendall’s Coefficient W = 0.052 p = 0.199

Table 2: Summary Statistics of Nonparametric Tests.

dent variables in the experiment had statistically sig-
nificant effects on ratings of sound quality attributes.
These results indicated that renderer performance was
highly content-specific, interacting with the renderers
at both the experimental condition level - music ver-
sus movie - and at the level of the individual stimuli.
The content-dependence of ratings of sound quality
attributes are consistent with previous literature [11].
Further, there tended to be two groups of renderers,
with renderer 00, 01, and 03 having similarly strong
performance and renderers 04 and 05 having similarly
weak performance. Renderer 02 was interesting be-
cause it performed well in the music condition, but
quite poorly in the movie condition, once again high-
lighting that the binaural rendering process can have
complex interactions with the content to be rendered
and so the selection of a renderer for use in creating
content should be consistent with the end-goals of the
application (ie: computer games, music, or movie).

The Phase II correlation analysis looked at the cor-
relations between sound quality ratings for each ren-
derer (Figs. 3-4) to understand the multicollinearity
of the sound quality attributes tested. It also provided
a means to understand the variability of renderer mul-
ticollinearity between sound quality attributes. Ren-
derers that performed strongest also demonstrated the
weakest correlations. Even so, generally, there was
strong collinearity between most of the characteristics,
which was further substantiated by the PCA analysis.
The multicollinearity analysis makes clear a few things
though. First, there is a distinction between spacious-
ness and the other quality attributes tested. In the music
condition, the second PCA component (Table 1) indi-
cates that the remaining data variance is partitioned

based on differences between the spaciousness and
the other three sound quality attributes. Thus for mu-
sic content, spaciousness appears to be perceptually
distinct from the other quality attributes. Second, natu-
ralness, which does not appear wholly distinct from the
balance and clarity in the music condition, is clearly
separated out in the movie condition. This suggests
that for music content, where naturalness does not nec-
essarily have an ecological meaning, it is perceptually
similarly to clarity and balance. But for movie content,
where the auditory reference point is an entire spatial
scene (including sound effects, music, and dialogue),
naturalness is more clearly differentiated from the other
characteristics [31].

The Phase III analysis indicated that renderer 04 was
the least preferred renderer by a large margin. The
ranking data generally agreed with the Phase II results,
with renderers 01 and 03 being the strongest performers
across both the music and movie conditions, renderer
02 being strong in the music condition and weak in the
movie condition, and renderer 00 being middle-of-the-
table. The final joint analysis attempted to understand
the mapping of sound quality attributes to rank by cor-
relation analysis. This was not unilaterally successful,
as statistically significant differences between the dis-
tributions of quality-rank correlations were found in
the music case, but not the movie case. Thus in the
movie case, no judgements on the relative importance
of the characteristics on rank can be made. The box-
plots taken together show a trend towards clarity being
a strong predictor of rank and spaciousness a weak
predictor of rank (especially for music content).

Following from this initial study and analyses, a num-
ber of possible improvements can be identified with
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respect to the proposed methodological approach for
Phase II and III. Though a 5-point rating scale in Phase
II was fine enough to discriminate between renderers
given a large number a subjects, the corrgrams (Fig.
3-4) suggest that the scale might not permit enough
nuance to meaningfully differentiate between all of the
different sound quality attributes. This issue can be ex-
acerbated when one of the tested renderers is relatively
weak and many renderers are being tested compara-
tively. An 11-point rating scale or perhaps even a much
larger scale (100-points) might prove useful. Further,
electing to determine user preference in a separate as-
sessment with a different methodological approach than
the other sound quality attributes presents some diffi-
culties with respect to statistical analyses and requires
appropriately handling the different data types (interval
vs. ordinal). This should be well-understood before
beginning binaural renderer evaluation.

5 CONCLUSIONS

The results of the sound quality assessment strongly
indicate that renderer performance is highly content
dependent, making it unlikely that a given renderer will
be optimal for multiple different applications. There
were significant interactions between the renderers and
experimental conditions - music and movie - and be-
tween the renderers and the individual stimuli within
the conditions. Thus the context in which the renderer
will be realized must be considered before choosing a
renderer. Further, a diverse set of stimuli, consistent
with said context, must be used for renderer evaluation.
The methodological approach used and analyzed in this
work performs well for the set of six commerical bin-
aural renderers selected, with the renderers able to be
discriminated between. But some improvements have
been suggested, the most significant of which is using
a finer rating scale. Future work will include regression
analysis to determine a more precise and significant
mapping of sound quality attributes to preference in
this setting.
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APPENDIX A - Phase II Univariate ANOVA Results

Factor Dependent Measure F Statistic Significance Partial ETA2

Renderer
Balance F(3.951,276.603) = 121.992a p < 0.001*** 0.635
Clarity F(3.725,260.750) = 166.169a p < 0.001*** 0.704

Naturalness F(5,350) = 102.293 p < 0.001*** 0.594
Spaciousness F(3.310,231.691) = 69.420a p < 0.001*** 0.498

Renderer*Content Type
Balance F(3.951,276.603) = 6.039a p < 0.001*** 0.079
Clarity F(3.725,260.750) = 14.377a p < 0.001*** 0.170

Naturalness F(5,350) = 11.403 p < 0.001*** 0.140
Spaciousness F(3.310,231.691) = 3.168a p = 0.021* 0.043

APPENDIX B - Phase II Music Only Univariate ANOVA Results

Factor Dependent Measure F Statistic Significance Partial ETA2

Renderer
Balance F(3.416,143.470) = 90.792a p < 0.001*** 0.684
Clarity F(3.635,152.677) = 153.816a p < 0.001*** 0.786

Naturalness F(5,210) = 100.104 p < 0.001*** 0.704
Spaciousness F(2.575,108.153) = 35.799a p < 0.001*** 0.460

Renderer*Stimulus
Balance F(7.380,309.955) = 1.918a p = 0.062 0.044
Clarity F(6.871,288.590) = 2.356a p = 0.024* 0.053

Naturalness F(10,420) = 2.474 p = 0.013* 0.056
Spaciousness F(10,420) = 3.355 p = 0.002** 0.074

APPENDIX C - Phase II Movie Only Univariate ANOVA Results

Factor Dependent Measure F Statistic Significance Partial ETA2

Renderer
Balance F(5,140) = 45.900 p < 0.001*** 0.621
Clarity F(3.328,93.185) = 50.226a p < 0.001*** 0.642

Naturalness F(5,140) = 30.414 p < 0.001*** 0.521
Spaciousness F(5,140) = 39.434 p < 0.001*** 0.585

Dialogue F(5,140) = 33.644 p < 0.001*** 0.546
Renderer*Stimulus

Balance F(10,280) = 6.882 p < 0.001*** 0.197
Clarity F(10,280) = 6.766 p < 0.001*** 0.195

Naturalness F(10,280) = 7.616 p < 0.001*** 0.214
Spaciousness F(10,280) = 8.805 p < 0.001*** 0.239

Dialogue F(10,280) = 7.135 p < 0.001*** 0.203
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